A UNIFIED MODEL FOR HYSTERESIS IN FERROIC MATERIALS

Ralph C. Smith

Department of Mathematics North Carolina State University

- Marcelo Dapino, Ohio State University
- Zoubeida Ounaies, Virginia Commonwealth University
- Stefan Seelecke, North Carolina State University

Research Support:

Air Force grant AFOSR-F49620-01-1-0107 NASA grant NAG-1-01041 NSF grant CMS-0099764

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 JUN 2003		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
A Unified Model F		5b. GRANT NUN	5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)					5d. PROJECT NUMBER	
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Mathematics North Carolina State University; Ohio State University 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
	otes 97, ARO-44924.1-E Nanotechnology)., T	· · · · · · · · · · · · · · · · · · ·			aterials (5th)	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 17	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

TALK OVERVIEW

I. Smart Material Applications

- Piezoelectrics Tunable lenses, nanopositioning
- Shape Memory Alloys Shape modification
- Magnetostrictives High force transduction

II. Modeling Hierarchies

- Develop energy relations at lattice level for single crystal, homogeneous compounds.
- Incorporate polycrystallinity and material nonhomogeneities through stochastic homogenization to obtain macroscopic constitutive relations.

III. Experimental Validation

- PZT5A Major and biased minor loops
- Terfenol-D Major and biased minor loops
- SMA Thin film

Goal:

 Develop a unified framework for model and control design for ferroic (ferromagnetic, ferroelectric and ferroelastic) materials.

I. PIEZOCERAMICS - NANOPOSITIONING

Atomic Force Microscope:

- Can provide atomic resolution
- Human chromosomes

Model Development:

- Must be able to attain Angstrom-level resolution
- Must be implemented in real time

Future Capabilities:

- Nanopositioning at the atomic level
- Electron spin detection: requires angstrom-level tracking

SHAPE MEMORY ALLOYS

Aerospace and Aeronautic Applications:

- Shape modification of airfoils
- Construction of modular mirrors and antennas
- Future Directions: MEM's,
 thin films Sandia National Labs

Vibration Attenuation:

Strategy:

- Vibration attenuation in aerospace structures (e.g., mirrors)
- Operate in hysteretic regime to optimize damping

MAGNETOSTRICTIVE MATERIALS

Automotive Application: e.g., High speed milling

Aerospace Applications:

• Magnetostrictive composites for active structural damping

MATERIAL ANALOGIES

Ferroelectric	Ferromagnetic	Ferroelastic	
Polarization	Magnetization	Strain	
Electric field	Magnetic field	Stress	
Paraelectric phase	Paramagnetic phase	Austenite phase	
Ferroelectric phase	Ferromagnetic phase	Martensite phase	
Ferroelectric domain walls	Bloch or Neel walls	Boundaries between martensite variants	
Devonshire theory	Mean field (Weiss) theory	Landau theory	
	Micromagnetic theory	Ginzburg-Landau theory	

MECHANISMS WHICH PRODUCE HYSTERESIS

Ferroelectric: Dipole switching

Ferromagnetic: Moment rotation, domain wall losses

Ferroelastic: Phase transitions

MESOSCOPIC MODEL - HELMHOLTZ ENERGY

Helmholtz Energy:

$$\psi(P,T) = U - ST$$

$$= \frac{\Phi_0 N}{4V} [1 - (P/P_s)^2] + \frac{TkN}{2VP_s} \left[P \ln \left(\frac{P + P_s}{P_s - P} \right) + P_s \ln(1 - (P/P_s)^2) \right]$$

Helmholtz Energy Relations:

$$\psi(P) = \begin{cases} \frac{\eta}{2} (P \pm P_R)^2 &, |P| \ge P_I \\ \frac{\eta}{2} (P_I - P_R) \left[\frac{P^2}{P_I} - P_R \right] &, |P| < P_I \end{cases}$$

$$\psi(M) = \begin{cases} \frac{\eta}{2} (M \pm M_R)^2 &, |M| \ge M_I \\ \frac{\eta}{2} (M_I - M_R) \left[\frac{M^2}{M_I} - M_R \right] &, |M| < M_I \end{cases}$$

$$\psi(\varepsilon,T) = \begin{cases} \frac{E_M}{2} (\varepsilon \pm \varepsilon_T)^2 &, |\varepsilon| \ge \gamma_M(T) \\ -\frac{E_0(T)}{2} [\varepsilon \pm \varepsilon_0(T)]^2 + \psi_0(T) &, |\gamma_A(T)| < \varepsilon < |\gamma_M(T)| \\ \frac{E_A}{2} \varepsilon^2 + \Delta \beta(T) &, |\varepsilon| \le \gamma_A(T) \end{cases}$$

MESOSCOPIC MODEL – GIBBS ENERGY

Gibbs Energy Relations:

$$G(E, P, T) = \psi(P, T) - EP$$
 (Ferroelectric)

$$G(H, M, T) = \psi(M, T) - \mu_0 HM$$
 (Ferromagnetic)

$$G(\sigma, \varepsilon, T) = \psi(\varepsilon, T) - \sigma\varepsilon$$
 (Ferroelastic)

MESOSCOPIC MODELS – UNIFORM LATTICE

Boltzmann Probability:

$$\mu(G) = Ce^{-GV/kT} \implies p_{+-} = \sqrt{\frac{kT}{2\pi mV^{2/3}}} \cdot \frac{e^{-G(E,P_0(T),T)V/kT}}{\int_{P_0}^{\infty} e^{-G(E,P,T)V/kT} dP}$$

Evolution Relations:

$$\frac{dx_+}{dt} = -p_{+-}x_+ + p_{-+}x_-$$

$$\frac{dx_-}{dt} = -p_{-+}x_- + p_{+-}x_+$$
 Ferroelastic: Analogous

Polarization:

$$\overline{P} = x_+ \langle P_+ \rangle + x_- \langle P_- \rangle$$

where

$$\langle P_{+} \rangle = \int_{P_{0}}^{\infty} P \mu(G) dP$$

Magnetization:

$$\overline{M} = x_+ \langle M_+ \rangle + x_- \langle M_- \rangle$$

where

$$\langle M_+ \rangle = \int_{M_0}^{\infty} M \mu(G) dM$$

MACROSCOPIC MODELS

Nonuniform Lattice:

$$f(E_c) = C_1 e^{-[\ln(E_c/\overline{E}_c)/2b]^2}$$

Variable Effective Fields:

$$\widehat{f}(\mathcal{E}) = C_2 e^{-(\mathcal{E} - E)^2/\bar{b}}$$

Macroscopic Models:

$$[P(E,T)](t) = C \int_0^\infty \int_{-\infty}^\infty f(E_c) \widehat{f}(\mathcal{E}) [\overline{P}(\mathcal{E}+E,T)](t) d\mathcal{E} dE_c$$

$$[M(H,T)](t) = C \int_0^\infty \int_{-\infty}^\infty f(H_c) \widehat{f}(\mathcal{H}) [\overline{M}(\mathcal{H} + H, T)](t) d\mathcal{H} dH_c$$

$$[\varepsilon(\sigma,T)](t) = C \int_0^\infty \int_{-\infty}^\infty f(\delta) \widehat{f}(\sigma_E) [\overline{\varepsilon}(\sigma_E + \sigma,T)](t) d\sigma_E d\delta$$

III. EXPERIMENTAL VALIDATION

PZT5A: Lognormal/normal densities

PZT5A: ID of general densities [B. Mukherjee, S-F. Liu - Data]

VALIDATION – FERROMAGNETIC MATERIALS

Example 1: Steel data from [Jiles and Atherton; 1984]

Example 2: Terfenol-D Transducer

Data Model

0 Field

2

-2

EXPERIMENTAL VALIDATION - SMA

Thin Films:

CONCLUDING REMARKS

Model Attributes:

- (1) Technique provides unified framework for modeling hysteresis in ferroelectric, ferromagnetic and ferroelastic materials.
- (2) Low number (5-10) and physical nature of parameters facilitates parameter estimation and control implementation.
- (3) Model guarantees closure of biased minor loops.
- (4) Model is amenable to inversion which facilitates linear control design.
- (5) Method provides energy basis for Preisach models.

References

- [1] H.T. Banks, A.J. Kurdila G. and G. Webb, "Identification of hysteretic control influence operators representing smart actuators Part I: Formulation," *Mathematical Problems in Engineering*. 3, pp. 287-328, 1997.
- [2] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer-Verlag, New York, 1996.
- [3] M.J. Dapino, R.C. Smith, L.E. Faidley and A.B. Flatau, "A coupled structural-magnetic strain and stress model for magnetostrictive transducers," *Journal of Intelligent Material Systems and Structures*, 11(2), pp. 134-152, 2000.
- [4] P. Ge and M. Jouaneh, "Modeling hysteresis in piezoceramic actuators," *Precision Engineering*, 17, pp. 211-221, 1995.
- [5] J.E. Massad, R.C. Smith and G.P. Carman, "A free energy model for thin-film shape memory alloys," CRSC Technical Report CRSC-TR03-03; Proceedings of the SPIE, Smart Structures and Materials 2003, to appear.
- [6] I.D. Mayergoyz, Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991.
- [7] N. Papenfuß and S. Seelecke, "Simulation and control of SMA actuators," Proceedings of the SPIE, Smart Structures and Materials 1999, Volume 3667, pp. 586-595, 1999.
- [8] S. Seelecke and I. Müller, "Shape memory alloy actuators in smart structures Modeling and simulation," ASME Applied Mechanics Reviews, to appear.
- [9] R.C. Smith, M.J. Dapino and S. Seelecke, "A free energy model for hysteresis in magnetostrictive transducers," *Journal of Applied Physics*, 93(1), pp. 458-466, 2003.
- [10] R.C. Smith and J.E. Massad, "A unified methodology for modeling hysteresis in ferroic materials," Proceedings of the 18th ASME Biennial Conference on Mechanical Vibration and Noise, 2001.
- [11] R.C. Smith and Z. Ounaies, "A domain wall model for hysteresis in piezoelectric materials," *Journal of Intelligent Material Systems and Structures*, 11(1), pp. 62-79, 2000.
- [12] R.C. Smith, M.V. Salapaka, A. Hatch, J. Smith and T. De, "Model development and inverse compensator design for high speed nanopositioning," Proc. 41st IEEE Conf. Dec. and Control, 2002, Las Vegas, NV.
- [13] R.C. Smith and S. Seelecke, "An energy formulation for Preisach models," Proceedings of the SPIE, Smart Structures and Materials 2002, Volume 4693, pp. 173-182, 2002.
- [14] R.C. Smith, S. Seelecke and Z. Ounaies, "A free energy model for piezoceramic materials," Proceedings of the SPIE, Smart Structures and Materials 2002, Volume 4693, pp. 183-190, 2002.
- [15] R.C. Smith, S. Seelecke, Z. Ounaies and J. Smith, "A free energy model for hysteresis in ferroelectric materials," CRSC Technical Report CRSC-TR03-01; Journal of Intelligent Material Systems and Structures, to appear.

- [16] A.N. Soukhojak and Y.-M. Chiang "Generalized rheology of active materials," *Journal of Applied Physics*, 88(11), pp. 6902-6909, 2000.
- [17] J. Woolman, "Effect of atomic composition on the mechanical properties of thin film pseudoelastic nickel titanium," Master's Thesis, Mechanical and Aerospace Engineering Department, UCLA, in preparation.